11111

COURSE INTRODUCTION AND APPLICATION INFORMATION


ce.cs.ieu.edu.tr

Course Name
Code
Semester
Theory
(hour/week)
Application/Lab
(hour/week)
Local Credits
ECTS
Fall/Spring
Prerequisites
None
Course Language
Course Type
Elective
Course Level
-
Mode of Delivery -
Teaching Methods and Techniques of the Course
Course Coordinator
Course Lecturer(s)
Assistant(s) -
Course Objectives
Learning Outcomes The students who succeeded in this course;
  • Will be able to do layout optimization of machines and tools in a new facility establishment
  • Will be able to improve the layout of an existing facility
  • Will be able to define the optimum location of a new facility
  • Will be able to use softwares for facility layout optimization
  • Will be able to group machines using group technology techniques
Course Description

 



Course Category

Core Courses
Major Area Courses
X
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

 

WEEKLY SUBJECTS AND RELATED PREPARATION STUDIES

Week Subjects Required Materials
1 Introduction to facilities design; Product and equipment analysis Textbook, Chapters 1-2
2 Process and material flow analysis; Traditional approaches to facility layout Textbook, Chapters 3-4
3 Basic algorithms and software for the layout problem Textbook, Chapter 5
4 Basic algorithms and software for the layout problem Textbook, Chapter 5
5 Group technology and facilities layout Textbook, Chapter 6
6 Group technology and facilities layout Textbook, Chapter 6
7 Group technology and facilities layout Textbook, Chapter 6
8 Storage and warehousing Textbook, Chapter 10
9 Storage and warehousing Textbook, Chapter 10
10 Midterm -
11 Storage and warehousing Textbook, Chapter 10
12 Basic models for the location problem Textbook, Chapter 11
13 Basic models for the location problem Textbook, Chapter 11
14 Basic models for the location problem Textbook, Chapter 11
15 Project presentations
16 Review of the Semester  
Course Notes/Textbooks Textbook: Facilities Design, (3rd edition), Sunderesh S. Heragu, CRC Press, Boca Raton, FL 2008.
Suggested Readings/Materials Instructor notes and lecture slides

 

EVALUATION SYSTEM

Semester Activities Number Weigthing
Participation
1
10
Laboratory / Application
Field Work
Quizzes / Studio Critiques
Portfolio
Homework / Assignments
1
10
Presentation / Jury
Project
1
15
Seminar / Workshop
Oral Exam
Midterm
1
30
Final Exam
1
35
Total

Weighting of Semester Activities on the Final Grade
65
Weighting of End-of-Semester Activities on the Final Grade
35
Total

ECTS / WORKLOAD TABLE

Semester Activities Number Duration (Hours) Workload
Course Hours
(Including exam week: 16 x total hours)
16
3
48
Laboratory / Application Hours
(Including exam week: 16 x total hours)
16
Study Hours Out of Class
15
2
Field Work
Quizzes / Studio Critiques
Portfolio
Homework / Assignments
1
2
Presentation / Jury
Project
1
7
Seminar / Workshop
Oral Exam
Midterms
1
10
Final Exams
1
15
    Total
112

 

COURSE LEARNING OUTCOMES AND PROGRAM QUALIFICATIONS RELATIONSHIP

#
Program Competencies/Outcomes
* Contribution Level
1
2
3
4
5
1

Adequate knowledge in Mathematics, Science and Computer Engineering; ability to use theoretical and applied information in these areas to model and solve Computer Engineering problems

X
2

Ability to identify, define, formulate, and solve complex Computer Engineering problems; ability to select and apply proper analysis and modeling methods for this purpose

X
3

Ability to design a complex computer based system, process, device or product under realistic constraints and conditions, in such a way as to meet the desired result; ability to apply modern design methods for this purpose

X
4

Ability to devise, select, and use modern techniques and tools needed for Computer Engineering practice

X
5

Ability to design and conduct experiments, gather data, analyze and interpret results for investigating Computer Engineering problems

X
6

Ability to work efficiently in Computer Engineering disciplinary and multi-disciplinary teams; ability to work individually

7

Ability to communicate effectively in Turkish, both orally and in writing; knowledge of a minimum of two foreign languages

8

Recognition of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself

9

Awareness of professional and ethical responsibility

10

Information about business life practices such as project management, risk management, and change management; awareness of entrepreneurship, innovation, and sustainable development

11

Knowledge about contemporary issues and the global and societal effects of engineering practices on health, environment, and safety; awareness of the legal consequences of Computer Engineering solutions

*1 Lowest, 2 Low, 3 Average, 4 High, 5 Highest

 

İzmir Ekonomi Üniversitesi | Sakarya Caddesi No:156, 35330 Balçova - İZMİR Tel: +90 232 279 25 25 | webmaster@ieu.edu.tr | YBS 2010